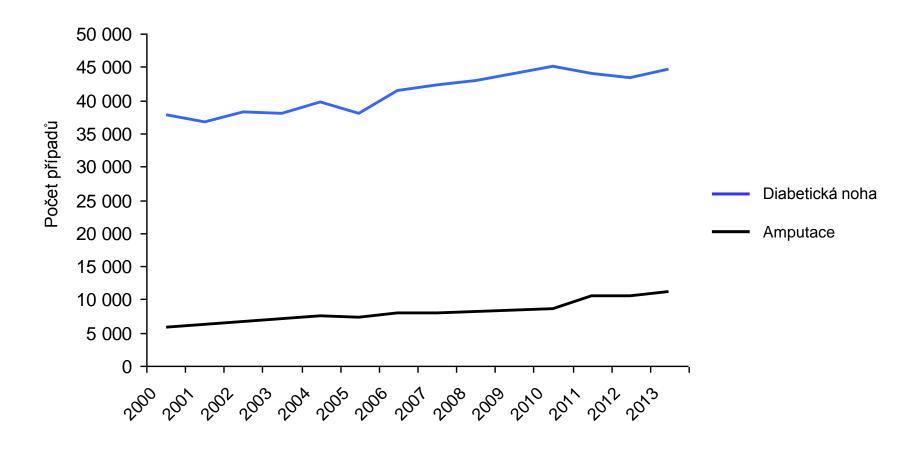


MOŽNOSTI BUNĚČNÉ TERAPIE U PACIENTŮ S KRITICKOU KONČETINOVOU ISCHEMIÍ MUDr. Václav Procházka,PhD.,MSc. Fakultní nemocnice Ostrava

XXV.SJEZD ČESKÉ KARDIOLOGICKÉ SPOLEČNOSTI

BRNO, 8.KVĚTNA 2017


Počet léčených pacientů s DM k 31.12. daného roku

* diabetes je definován jako E10, E11, E13, R73.0

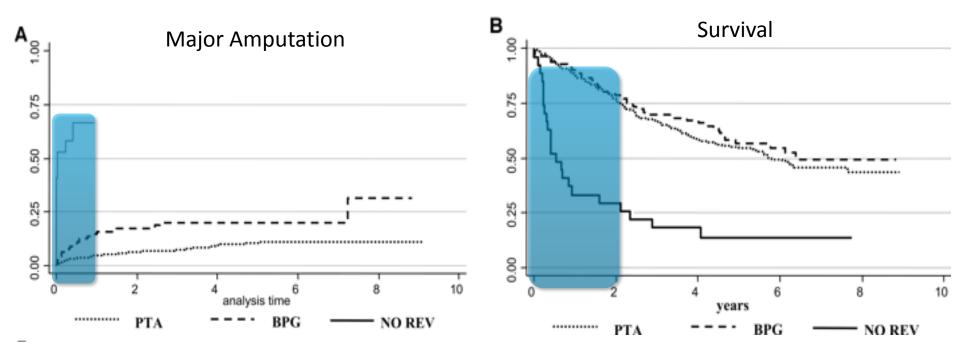
Zdroj: Výkazy o činnosti zdravotnických zařízení pro obor diabetologie (A04), období: 2000 - 2013

Počet případů diabetické nohy a počet amputací

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Diabetická noha	37 764	36 725	38 166	37 971	39 753	38 090	41 328	42 337	42 992	43 990	45 118	44 011	43 248	44 657
Amputace	5 865	6 118	6 743	7 029	7 444	7 303	7 834	7 853	8 169	8 439	8 501	10 408	10 425	11 168
(%)	(15,53 %)	(16,66 %)	(17,67 %)	(18,51 %)	(18,73 %)	(19,17 %)	(18,96 %)	(18,55 %)	(19,00 %)	(19,18 %)	(18,84 %)	(23,65 %)	(24,11 %)	(25,01 %)

Zdroj: Výkazy o činnosti zdravotnických zařízení pro obor diabetologie (A04), období: 2000 - 2013

Amputace na operačním sále Saint Thomas Hospital, London, okolo roku 1775


No-option critical limb ischemia

Kritická Končetinová Ischemie – Prognóza

Meta-Analysis Major Amputations and Survival

in 564 patients with CLI and diabetes

CLI Diagnosis: 1.) Ankle Blood Pressure: <70 mmHg, 2.) TcPO₂ < 50 mmHg

CLI Prognosis: No Revascularization Possible in 20-30%

FAGLIA ET AL., DIABETES CARE. 2009 MAY;32(5):822-7

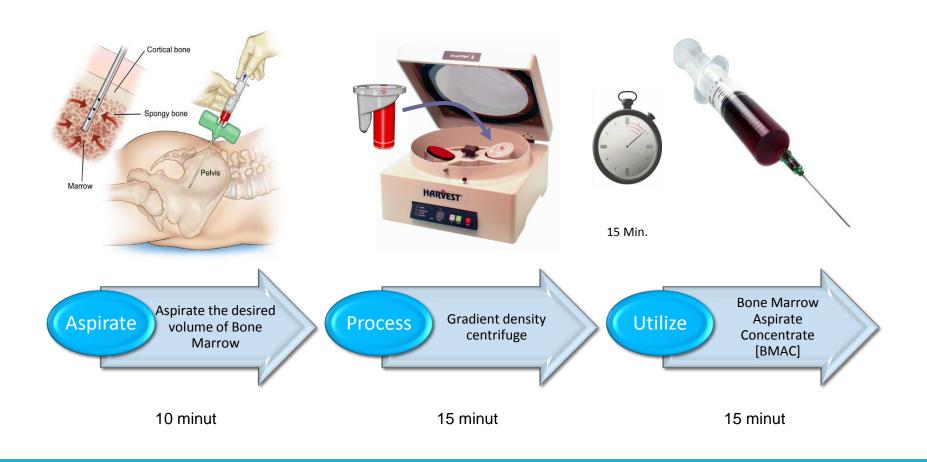
Klinické studie s buněčnou terapií pro NO-CLI 15ti leté zkušenosti

To Date: 67=Clinical Studies (19= RCT, 7= Non-RCT, 41= Noncontrolled studie) Including 2332 Patients.

Characteristic	All Studies (n=67)	Randomized Controlled Trials (n=19)	Nonrandomized Controlled Trials (N=7)	Noncontrolled Studies (N=41)
Number	2332	837	338	1157
ASO/TAO/unknown, %	59/14/27	67/3/30	62/8/30	55/22/23
Age, y	62.6	65.2	63.4	59.9
Sex male, %	71.9	70.7	72.2	72.9
Hypertension, %	66.1	77.0	63.0	59.9
Diabetes mellitus, %	58.3	61.0	60.2	55.6
Dyslipidemia, %	54.6	76.5	38.6	45.1
Smoke, %	66.6	64.9	66.9	68.0
Chronic kidney disease, %	20.5	26.4	25.5	9.7
CHD, %	38.9	40.5	38.6	37.5
Previous revascularization, %	50.5	51.2	48.1	50.8
Baseline				
ABI	0.49	0.54	0.57	0.47
TcO ₂ , mm Hg	26.2	36.1	19.5	23.4
Follow-up, months	8.1	6.0	6.8	10.2
Therapies				
Antiplatelet, %	66.8	76.2	83.5	50.5
Statins, %	52.9	81.2	25.7	28.9

Rigato et al, (2017) Meta-Analysis of Cell Therapy for PAD

Klinické studie s genovou terapií pro NO-CLI

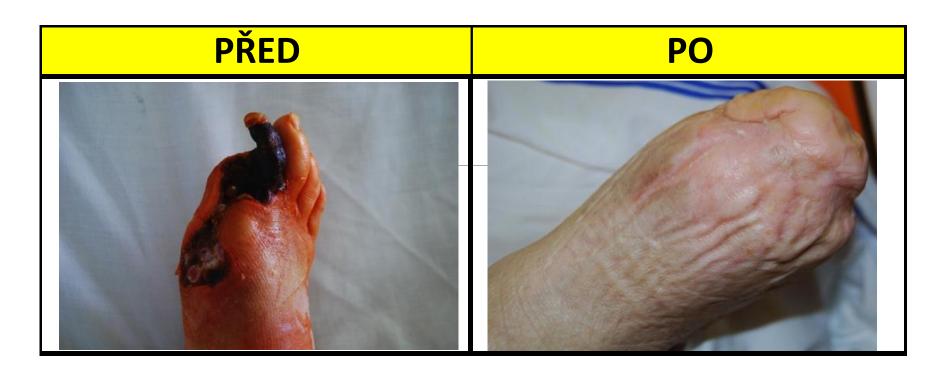

Trial	Year	Treatment	Patients	Follow up	Primary Endpoint	Outcome
					Digital subtraction	in amputation rate, ulce
					angiography analysis	healing or rest pain but
Makinen et al.	2002	VEGF	54 (14 CLI) 3 mo	of vascularity	increased vascularity in
						in amputation rate but
					Amputation rate at	improved wound healin
Kusumanto et al.	2006	VEGF	54	100 d	100 days	and ABI
					Complete healing of	in ulcer healing but with
					least 1 ulcer at week	a significant reduction i
TALISMAN invest	2008	FGF-1	125	25 wk	25	amputations and a tren
		HGF (high			Safety, ABI,	dose group but no
		vs. mid vs.			Amputation, wound	difference in ABI, pain
HGF-STAT	2008	low dose)	104	6 mo	healing, and TcPO2	relief, and wound
						amputation rates and
					Major amputation or	mortality between
TAMARIS	2011	FGF-1	525	1 year	death at 1 year	groups

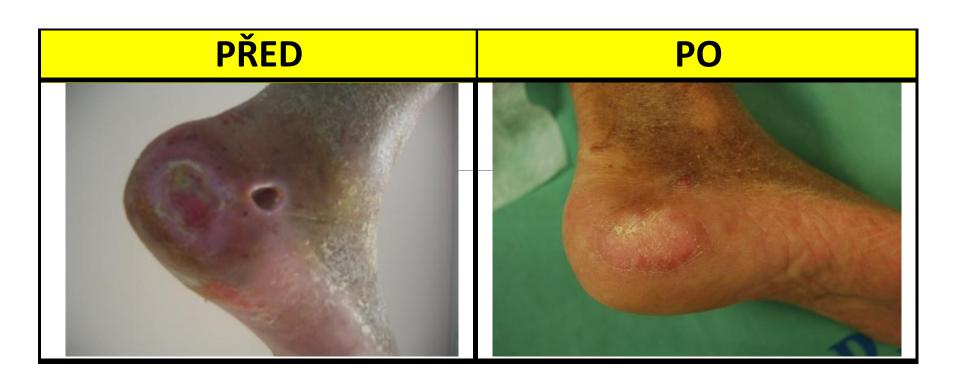
Klinické studie s buněčnou terapií pro NO-CLI

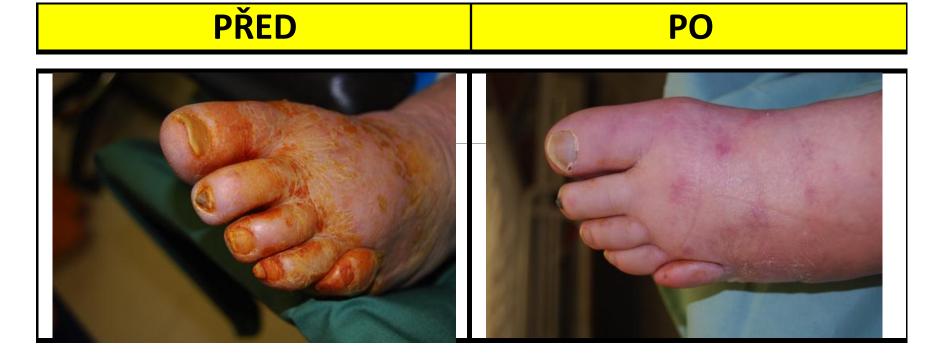
Trial	Investigators	Year	Treatment	Patients	Follow up	Primary Endpoin	Outcome
ТАСТ	TACT study inve	2002	BM-MNC	25	2 mo	Safety, ABI, rest pain	Improvement in ABI, TcPO2 and pain-free walking time
START	van Royen et al	2005	GM-CSF m	40	2 wk	MACE, ABI, walking time	Not beneficial in patients with moderate to severe claudication
ТАСТ	Matoba et al	2008	BM-MNC	85	24 mo	Mortality and amputation free interval	Improvement in leg pain scale, ulcer size and pain free walking distance but not in ABIs and TcPO2
PROVASA	Walter et al	2011	BM-MNC		3 mo	ABI	Improved ulcer healing and reduced rest pain but no significant increase in ABI
JUVENTAS	Teraa et al	2015	BM-MNC	160	6 mo	Major amputation	No difference in amputation rates, quality of life, rest pain, ABI, TcPo2

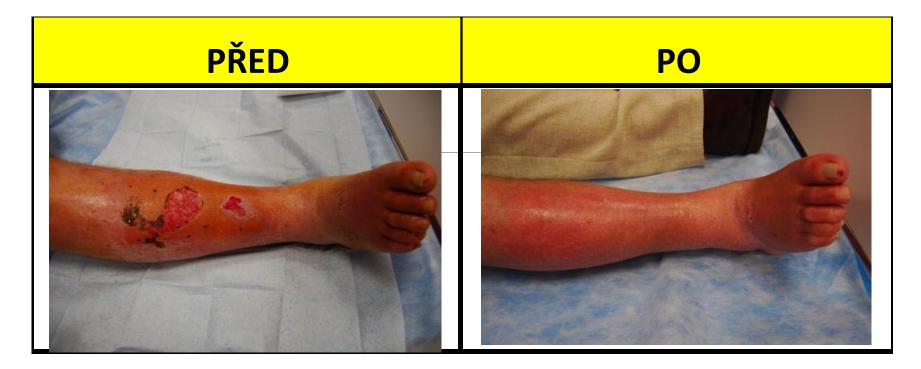
Proces zpracování a aplikace kostní dřeně

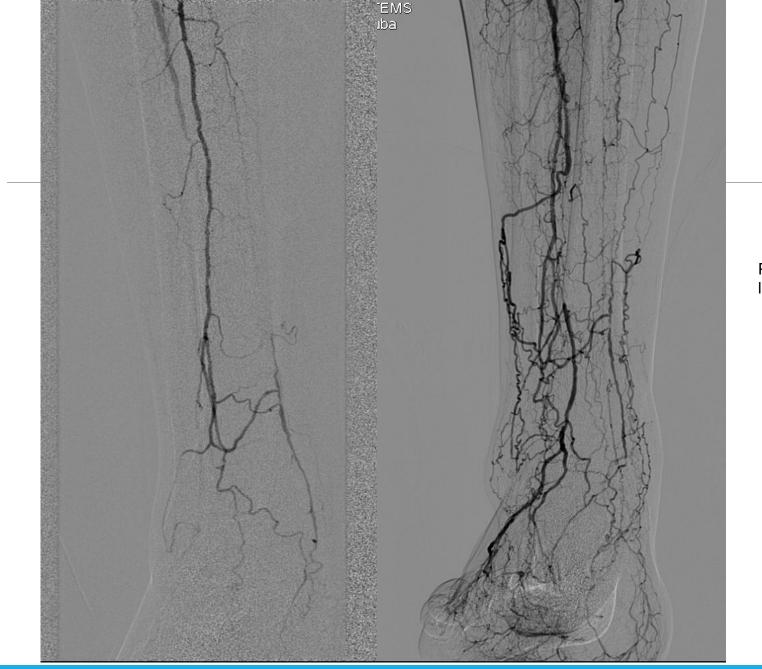
V režimu "Point-of-Care"

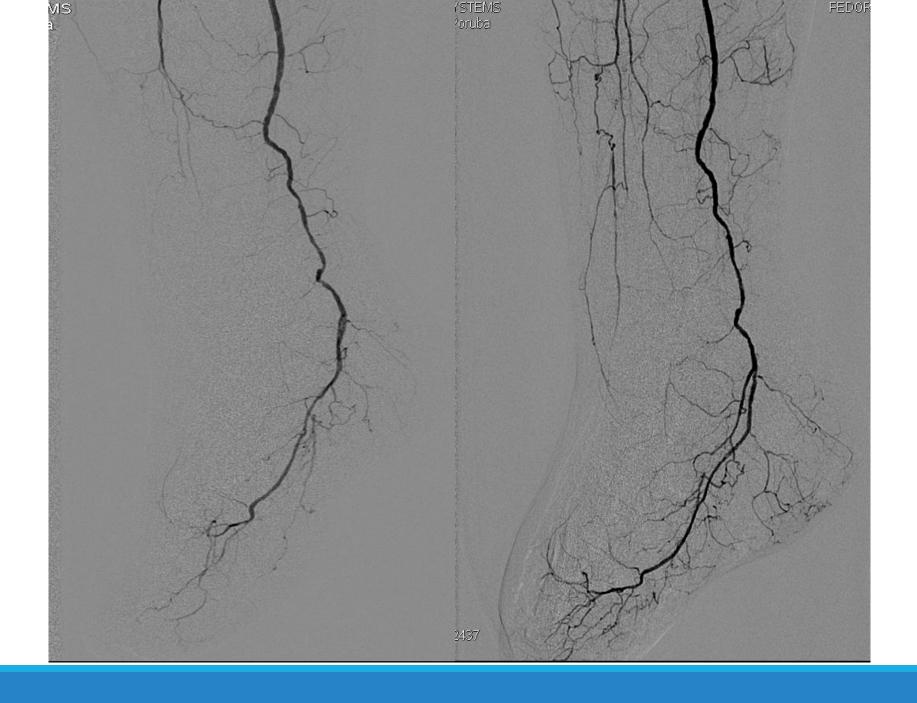

PO











Před léčbou Po léčbě

Legislativa

Legislativa před rokem 2008

Buňky a jejich produkty regulovány zákonem 285/2002 Sb. "Transplantační zákon"

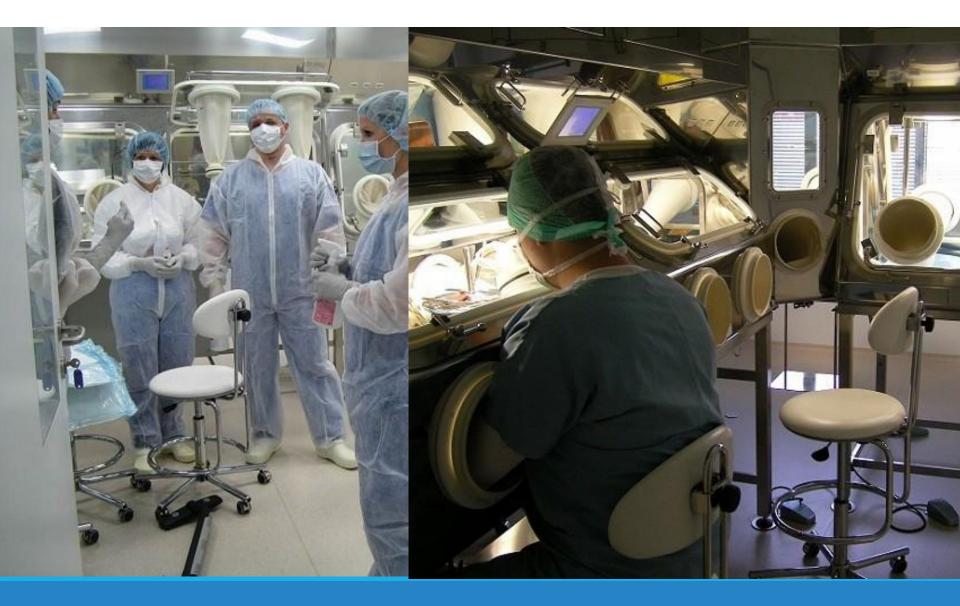
Legislativa po roce 2008

Harmonizace českého práva s legislativou EU-EMA (CAT)

Od roku 2008 aktivní dva zákony:

296/2008 Sb. "Zákon o tkáních a buňkách "

378/2007 Sb. "Zákon o léčivu"


Zákon 378/2007

Regulation of the European Parliament and Council Regulation (EC) no. 1394/2007 of 13 November 2007 on medicinal products for advanced therapy and amending Directive 2001 /83 / EC and Regulation (EC) no. 726/2004

Advance Therapy Medicinal Products (ATMPs) 9/2015

- Somatobuněčná
- Produkty tkáňového inženýrství
- Genová terapie

Advance Therapy Medicinal Products (ATMPs) 9/2015

Požadavky SÚKL na kvalitu propouštěných buněk

1.Požadavky na buněčný rozpočet koncentrátu

Typ Buněk	Průměrný % zisk buněk při zpracování	Průměrný počet buněk
Krevní destičky x 10 ⁶ /ml	73.9 ± 17.1	794x10 ⁶ ± 429
Mononukleární elementy	70.2 ± 29.9	376 x 10 ⁶ ± 79
CD34+ buňky x 10 ⁶ /ml	74.6 ± 13.7	9.02 x 10 ⁶ ± 4.3
CFU-Fibroblasty/cm3	3.040 ± 1.251	60.800 ± 29.200

Požadavky na výstupní kvalitu koncentrátu

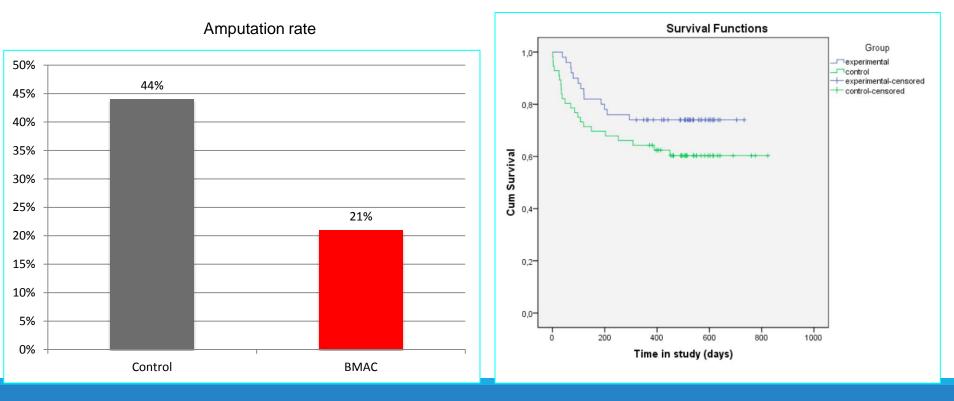
- Sterilita výsledného produktu (negativní bakteriologické a virologické vyšetření)
- Nejméně 95% viabilita buněk s CD34+ znaky v koncentrátu

Požadavky na vyšetření dárce

 Serologické vyšetření dárců na hepatitidu, CMV, EBV, HIV, TPPA, HSV, VZV

2.Požadavky na imunofenotypizaci koncentrátu

Buněčný marker	Average value	Standard
		deviation
CD 34 [%]	0.7	± 0.42
CD10 [%]	15	15 ± 7.07
CD 13 [%]	40	± 0
CD 14 [%]	0	± 0
CD 24 [%]	5	± 7.07
CD 29 [%]	100	± 0
CD 31 [%]	87.5	±17.68
CD 36 [%]	25	25 ± 21.21
CD 38 [%]	77.5	± 3.54
CD 44 [%]	90	± 14.14
CD 49 [%]	2.5	± 3.54
CD 73 [%]	45	± 63.64
CD 90 [%]	7.5	± 3.54
CD 105 [%]	92.5	± 3.54
CD 106 [%]	10	± 0
CD 117 [%]	75	± 21.21
CD 133 [%]	70	± 28.28
CD 166 [%]	70	± 42.43
HLA-DR [%]	82	± 7.07
HLA-ABC [%]	100	± 0

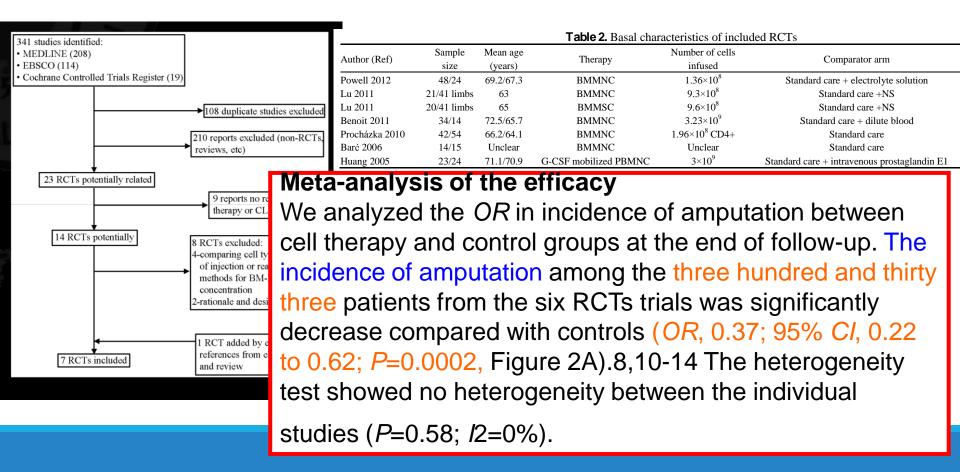

Cell Transplantation, Vol. 19, pp. 1413–1424, 2010 Printed in the USA. All rights reserved. Copyright Ó 2010 Cognizant Comm. Corp. 0963-6897/10 \$90.00 + .00 DOI: 10.3727/096368910X514170 E-ISSN 1555-3892 www.cognizantcommunication.com

Cell Therapy, a New Standard in Management of Chronic Critical Limb Ischemia and Foot Ulcer

V. Procházka,* J. Gumulec,† F. Jalůvka,‡ D. Šalounová,§ T. Jonszta,* D. Czerný,* J. Krajča,* R. Urbanec,‡ P. Klement,¶ J. Martinek,# and G. L. Klement**

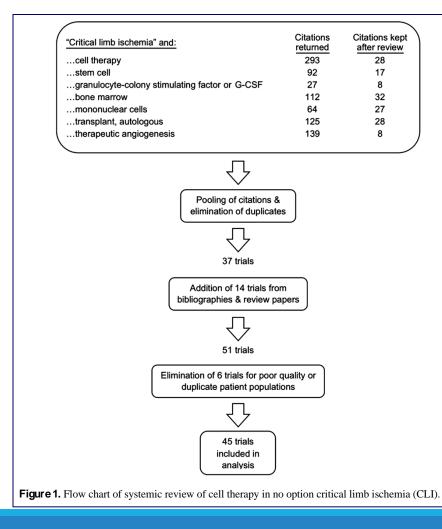
ClinicalTrials.gov: NCT01232673

Kaplan Meier 2y amputation free survival



Meta analysis

Autologous bone marrow stem cell transplantation in critical limb ischemia: a meta-analysis of randomized controlled trials


LIU Fu-peng, DONG Jian-jun, SUN Shu-juan, GAO Wei-yi, ZHANG Zhong-wen, ZHOU Xiao-jun, YANG Liu, ZHAO Jun-yu, YAO Jin-ming, LIU Meng and LIAO Lin

Keywords: bone marrow-derived cells; stem cells; transplantation; critical limb ischemia; meta-analysis

Safety and Efficacy of Autologous Cell Therapy in Critical Limb Ischemia: A Systematic Review

Eric Benoit,* Thomas F. O'Donnell, Jr.,† and Amit N. Patel‡

lic		Amputation Trials Alone	Rates From	RCTs: All	Trials Versus
sit		n Pts	nAmp	% Amp) <i>p</i> *
	All RCTs	365	75	20.5	
	Tx	195	28	14.4	0.0019
	Control	170	47	27.6	
	BMMNC	295	58	19.7	
	Tx	149	22	14.8	0.0278
	Control	142	36	25.4	J

*Value of *pis* calculated using Fischer's exact test.

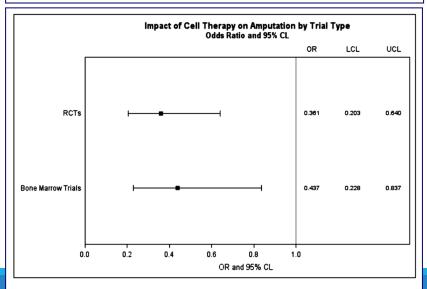


Figure 2. Meta-analysis of cell therapy on amputation rate. All RCTs and bone marrow trials only.

Autologous Bone Marrow–Derived Cell Therapy in Patients With Critical Limb Ischemia

A Meta-Analysis of Randomized Controlled Clinical Trials

Martin Teraa, MD,*† Ralf W. Sprengers, MD, PhD,‡ Yolanda van der Graaf, MD, PhD,§ Charmaine E. J. Peters, BSc,* Frans L. Moll, MD, PhD,† and Marianne C. Verhaar, MD, PhD*

	(Cell The	rapy	Control C	Group		Risk Ratio	Risk Ratio*
Study or Subgroup	E	ents	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Barć et al 20		3	14	7	15	11.0%	0.46 [0.15, 1.44]	
Benoit et al 9		10	34	5	14	18.6%	0.82 [0.34, 1.97]	
Huang et al ²³		0	23	5	24	1.8%	0.09 [0.01, 1.62]	< <u>·</u> · · · · +
Debin et al 22		0	22	3	23	1.7%	0.15 [0.01, 2.73]	< <u>→</u>
Lu et al 26 BMMNC		0	19	6	37	1.8%	0.15 [0.01, 2.46]	• · · ·
Lu et al ²⁶ BMMSC		0	18	6	37	1.8%	0.15 [0.01, 2.59]	<
Ozturk et al ²⁴	Δ	3	20	5	20	8.6%	0.60 [0.17, 2.18]	
Powell et al ¹⁷		10	48	6	24	18.2%	0.83 [0.34, 2.02]	
Procházka et al 25		9	42	24	54	33.6%	0.48 [0.25, 0.92]	
Walter et al ¹¹		3	19	1	21	3.0%	3.32 [0.38, 29.23]	
Total (95% CI)			259		269	100.0%	0.58 [0.40, 0.84]	•
Total events		38		68				
Heterogeneity: $\tau^2 = 0.0$	00; x	² = 8.71	. df = 9	(P = 0.46);	I ² = 0%			
Test for overall effect:							Fa	0.01 0.1 1 10 100 avours cell therapy Favours control

	Cell The	rapy	Control 0	Group		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Barć et al ²⁰	11	14	8	15	11.4%	1.47 [0.85, 2.55]	
Benoit et al ⁹	23	34	9	14	13.9%	1.05 [0.67, 1.66]	_ - _
Lu Debin et al ²²	22	22	20	23	24.1%	1.15 [0.96, 1.37]	+
Ozturk et al ²⁴	17	20	15	20	18.9%	1.13 [0.83, 1.55]	
Powell et al ¹⁷	36	48	8	24	10.4%	2.25 [1.25, 4.05]	
Walter et al ¹¹	15	19	20	21	21.3%	0.83 [0.64, 1.07]	+
Total (95% CI)		157		117	100.0%	1.16 [0.92, 1.48]	•
Total events	124		80				
Heterogeneity: $\tau^2 = 0$.	05; $\chi^2 = 15$	5.13, df	= 5 (P = 0.	010); l2 :	= 67%		
Test for overall effect:	Z = 1.24 (F	P = 0.22))				0.2 0.5 1 2 5 Favours control Favours cell therapy

A: Major amputation B: Amputation-free survival

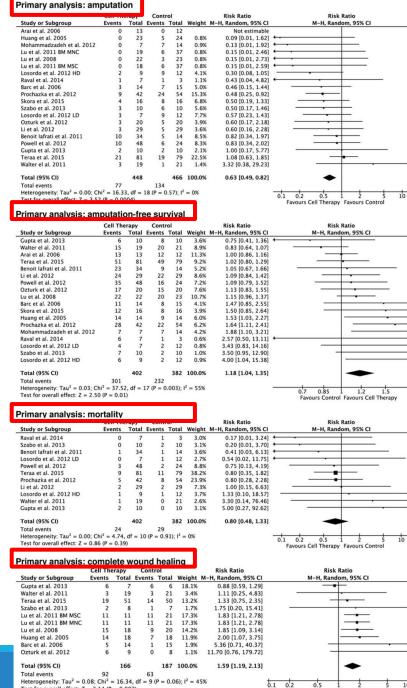
Ann Surg. 2013 Dec;258(6):922-9.

Autologous Cell Therapy for Peripheral Arterial Disease Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies

Mauro Rigato, Matteo Monami, Gian Paolo Fadini

- <u>*Rationale:*</u> Critical limb ischemia is a life-threatening complication of peripheral arterial disease. In patients who are ineligible for revascularization procedures, there are few therapeutic alternatives, leading to amputations and death.
- **<u>Objective</u>**: To provide a systematic review of the literature and a meta-analysis of studies evaluating safety and efficacy of autologous cell therapy for intractable peripheral arterial disease/critical limb ischemia.
- *Methods and Results:* We retrieved 19 randomized controlled trials (837 patients), 7 nonrandomized trials (338 patients), and 41 noncontrolled studies (1177 patients). The primary outcome was major amputation. Heterogeneity was high, and publication bias could not be excluded. Despite these limitations, the primary analysis (all randomized controlled trials) showed that cell therapy reduced the risk of amputation by 37%, improved amputation-free survival by 18%, and improved wound healing by 59%, without affecting mortality. Cell therapy significantly increased ankle brachial index, increased transcutaneous oxygen tension, and reduced rest pain. The secondary analysis (all controlled trials; n=1175 patients) shows that there may be potential to avoid ≈1 amputation/year for every 2 patients successfully treated. The tertiary analysis (all studies; n=2332 patients) precisely estimated the changes in ankle brachial index, transcutaneous oxygen tension, rest pain, and walking capacity after cell therapy. Intramuscular implantation appeared more effective than intra-arterial infusion, and mobilized peripheral blood mononuclear cells may outperform bone marrow–mononuclear cells and mesenchymal stem cells. Amputation rate was improved more in trials wherein the prevalence of diabetes mellitus was high. Cell therapy was not associated with severe adverse events. Remarkably, efficacy of cell therapy on all end points was no longer significant in placebo-controlled randomized controlled trials and disappeared in randomized controlled trials with a low risk of bias.
- <u>Conclusions</u>: Although this meta-analysis highlights the need for more high-quality placebo-controlled trials, equipoise may no longer be guaranteed because autologous cell therapy has the potential to modify the natural history of intractable critical limb ischemia. (*Circ Res.* 2017;120:1326-1340. DOI: 10.1161/CIRCRESAHA.116.309045.)

Key Words: angiogenesis ■ diabetes mellitus ■ epidemiology ■ mortality ■ regeneration ■ stem cells



Mauro Rigato et al. Circ Res. 2017;120:1326-1340

Results of the primary analysis of randomized controlled trials (RCTs) on objective binary end points.

Mauro Rigato et al. Circ Res. 2017;120:1326-1340

Copyright C American Heart Association, Inc. All rights reserved.

Test for overall effect: Z = 3.14 (P = 0.002)

American Heart Association_®

10 0.5 5 Favours Control Favours Cell Therapy

Results of the primary analysis of randomized controlled trials (RCTs) on surrogate end points.

Mauro Rigato et al. Circ Res. 2017;120:1326-1340

imary analysis: AB				0	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Losordo et al. 2012 HD	0.1	0.05	9	0.1	0.175	12	7.3%	0.00 [-0.10, 0.10]	
Teraa et al. 2015	0.11	0.2	81	0.08	0.24	79	10.6%	0.03 [-0.04, 0.10]	
Arai et al. 2006	0.53	0.06	13	0.47	0.03	12	14.0%	0.06 [0.02, 0.10]	
Lu et al. 2008	0.7	0.11	22	0.61	0.11	23	11.0%	0.09 [0.03, 0.15]	
Walter el al. 2011	0.75	0.24	19	0.66	0.42	21	2.7%	0.09 [-0.12, 0.30]	
Lu et al. 2011 BM MNC	0.65	0.034	19	0.55	0.071	37	14.9%	0.10 [0.07, 0.13]	
Losordo et al. 2012 LD	0.2	0.225	7	0.1	0.175	12	3.1%	0.10 [-0.09, 0.29]	
Huang et al. 2005	0.63	0.25	23	0.51	0.28	24	4.5%	0.12 [-0.03, 0.27]	
Ozturk et al. 2012	0.87	0.24	20	0.73	0.28	20	4.1%	0.14 [-0.02, 0.30]	
Lu et al. 2011 BM MSC	0.72	0.078	18	0.55	0.071	37	13.4%	0.17 [0.13, 0.21]	
Gupta et al. 2013	0.76	0.15	10	0.59	0.14	10	5.7%	0.17 [0.04, 0.30]	
Skora et al. 2015	0.52	0.52	16	0.3	0.29	16	1.5%	0.22 [-0.07, 0.51]	
Mohammadzadeh et al. 2012	0.92	0.15	7	0.65	0.25	14	3.8%	0.27 [0.10, 0.44]	
Szabo et al. 2013	0.36	0.3	10	-0.01	0.014	10	3.3%	0.37 [0.18, 0.56]	-
Total (95% CI)			274			327	100.0%	0.11 [0.07, 0.15]	•
Heterogeneity: $Tau^2 = 0.00$; Ch	$i^2 = 36$	47, df =	= 13 (P	= 0.00	05); I ² =	64%			-0.2 -0.1 0 0.1 0

Primary analysis: TcO₂

	Exp	erimen	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Walter el al. 2011	40.5	23	19	39.7	17	21	10.0%	0.80 [-11.84, 13.44]	
Teraa et al. 2015	10.4	23.3	81	6.7	20.1	79	15.1%	3.70 [-3.04, 10.44]	
Arai et al. 2006	32	8	13	26	5	12	16.5%	6.00 [0.81, 11.19]	
Szabo et al. 2013	6.6	12.6	10	-3.5	9.3	10	12.4%	10.10 [0.39, 19.81]	
Ozturk et al. 2012	44.3	10.03	20	32.35	14.7	20	14.1%	11.95 [4.15, 19.75]	
Lu et al. 2011 BM MNC	61	9.5	19	44.2	13	37	15.8%	16.80 [10.82, 22.78]	
Lu et al. 2011 BM MSC	66	8	18	44.2	13	37	16.1%	21.80 [16.21, 27.39]	
Total (95% CI)			180			216	100.0%	10.74 [4.93, 16.54]	•
Heterogeneity: $Tau^2 = 4$	6.35; Ch	$ni^2 = 28$.37, df	= 6 (P -	< 0.00	01); I ²	= 79%	_	
Test for overall effect: Z									-20 -10 0 10 20 Favours Control Favours Cell Therapy

Primary analysis: pain score

	Expe	erimen	tal	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Huang et al. 2005	1.07	0.92	14	2.86	1.17	14	7.9%	-1.79 [-2.57, -1.01]	
Lu et al. 2011 BM MSC	1.87	1	18	3.3	0.6	37	9.9%	-1.43 [-1.93, -0.93]	
Lu et al. 2008	2.14	0.66	22	3.47	0.64	23	10.7%	-1.33 [-1.71, -0.95]	
Lu et al. 2011 BM MNC	2.1	0.8	19	3.3	0.6	37	10.5%	-1.20 [-1.61, -0.79]	
Losordo et al. 2012 LD	-1.3	0.6	7	-0.4	1.3	12	7.4%	-0.90 [-1.76, -0.04]	
Ozturk et al. 2012	2.24	0.64	20	3.08	0.32	20	11.0%	-0.84 [-1.15, -0.53]	
Walter el al. 2011	0.8	1	19	1.6	1.4	21	8.2%	-0.80 [-1.55, -0.05]	
Barc et al. 2006	-1.41	0.7	14	-1.2	0.7	15	9.8%	-0.21 [-0.72, 0.30]	
Arai et al. 2006	1.9	0.4	13	2.1	0.3	12	11.2%	-0.20 [-0.48, 0.08]	
Losordo et al. 2012 HD	-0.2	0.7	9	-0.4	1.3	12	7.4%	0.20 [-0.67, 1.07]	
Gupta et al. 2013	1	1.24	10	0	1.24	10	6.0%	1.00 [-0.09, 2.09]	
Total (95% CI)			165			213	100.0%	-0.74 [-1.12, -0.36]	•
Heterogeneity: $Tau^2 = 0$.	31; Chi ²	= 62.	13, df :	= 10 (P	< 0.0	0001);	$^{2} = 84\%$	-	
Test for overall effect: Z									-2 -1 0 1 2 Favours Cell Therapy Favours Control

Copyright © American Heart Association, Inc. All rights reserved.

Primary analysis: Pain-free walking distance

	Expe	minent	aı		Control			Mean Difference	Mean Difference
Study or Subgroup	ly or Subgroup Mean SD Total M		Mean	Mean SD Total \			IV, Random, 95% CI	IV, Random, 95% CI	
Losordo et al. 2012 LD	-16.7	92.7	7	108.2	191.8	12	19.8%	-124.90 [-253.32, 3.52]	
Losordo et al. 2012 HD	98	138.6	9	108.2	191.8	12	19.0%	-10.20 [-151.54, 131.14]	
Lu et al. 2008	369.3	111	22	203.3	85.5	23	23.8%	166.00 [107.93, 224.07]	
Dash et al. 2009	284.44	212.1	12	78.22	35.35	12	20.2%	206.22 [84.56, 327.88]	
Huang et al. 2005	306.4	289.1	14	78.6	142.3	14	17.1%	227.80 [59.01, 396.59]	$ \longrightarrow$
Total (95% CI)			64			73	100.0%	93.73 [-30.05, 217.51]	
Heterogeneity: Tau ² = 1 Test for overall effect: Z				$\mathbf{f} = 4 \ (\mathbf{F}$	P = 0.00	001); I ²	= 83%		-200 -100 0 100 200 Favours Control Favours Cell Therapy

Souhrn vykázané/uznané péče za pacienty, kteří prodělali amputaci kvůli poruše oběhového systému,

kromě horních končetin a prstů u nohy, viz DRG báze 0515

- data za 01/2011 - 10/2014 (hosp. data dle DRG; preskripce a poukazy na zdrav. prostředky; amb. produkce)

- zdroj dat: Archív vykázané/uznané péče FNO (datový sklad OSVZP a OFA)

	HOSPITALIZACE dle DRG								PRESKRIPC	E HVLF	P, IVLP a ZP na po	AMBULANCE**				
	počet RČ dle DRG báze				HOSP výkonově s HB		Uhrada HOSP vše přes Případový paušál DRG (před i	báze 0515 (před i po				Preskripce Léků a ZP pac. (před i po	počet RČ dle DRG báze 0515 (před i po			Úhrada AMB. (před i po
ROK	0515	body	LP	Zum, Zulp	0,90 Kč	СМ	po amputaci)	amputaci)	HVLP	IVLP	ZP	amputaci)	amputaci)	body	Zum,Zulp	amputaci)
2011	67	6 694 648	173 570 Kč	1 291 037 Kč	7 489 790 Kč	247,4431	7 988 940 Kč	76	708 940 Kč	0 Kč	446 666 Kč	1 155 606 Kč	97	2 550 391	481 640 Kč	2 536 251 Kč
2012	61	6 277 889	165 970 Kč	1 543 014 Kč	7 359 084 Kč	228,9441	7 727 830 Kč	76	833 484 Kč	0 Kč	507 724 Kč	1 341 208 Kč	88	2 791 178	420 305 Kč	2 648 800 Kč
2013	70	7 075 759	198 465 Kč	1 870 630 Kč	8 437 278 Kč	273,6646	8 706 160 Kč	68	526 295 Kč	0 Kč	337 734 Kč	864 029 Kč	94	2 400 561	685 029 Kč	2 571 565 Kč
01-10/2014	52	5 443 352	129 240 Kč	1 351 064 Kč	6 379 320 Kč	185,3878	6 106 743 Kč	55	445 878 Kč	0 Kč	267 377 Kč	713 254 Kč	73	694 910	118 054 Kč	686 750 Kč
Celkem		25 491 648	667 245 Kč	6 055 744 Kč	29 665 472 Kč	935,4396	30 529 673 Kč		2 514 597 Kč	0 Kč	1 559 501 Kč	4 074 097 Kč		8 437 040	1 705 028 Kč	8 443 366 Kč

* r. 2011-2013 - výpočet dle vyúčtování zdrav. služeb od jednotlivých ZP - vše Případovým paušálem (jako Alfa DRG); r. 2014 - dle Úhradové vyhlášky - vše Případovým paušálem (jako Alfa DRG) ** body přepočtené k 1.1.2014; úhrada za body dle HB dle úhradové vyhlášky (HB nesnižována) včetně výkonů: klinické stomatologie; CyberKnife; SDH; lůžek sociální péče; foniatrických pomůcek

ROK	prům. HOSP.	prům. PRESKR.	prům. AMB.	Vážená prům. úhrada na RČ (Hosp, Preskr., Amb.)
2011	119 238 Kč	15 205 Kč	26 147 Kč	160 590 Kč
2012	126 686 Kč	17 647 Kč	30 100 Kč	174 433 Kč
2013	124 374 Kč	12 706 Kč	27 357 Kč	164 437 Kč
01-10/2014	117 437 Kč	12 968 Kč	9 408 Kč	139 813 Kč

Průměr = 166 500 kč Protéza= 85 000 kč Vozík = 40 000 kč **Celkem= 291 500 Kč**

Náklady na rehabilitaci Socio-ekonomické náklady EURODIALE – 500 600 kč

Pacienti s DM v daných letech ¹	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Počet léčených pacientů celkem- k 31.12. daného roku	654 164	653 418	667 135	686 865	712 079	739 305	748 528	754 961	773 561	783 321	806 230	825 382	841 227	861 647
Počet léčených pacientů na 100 000 obyv.	6 368	6 391	6 540	6 733	6 976	7 224	7 291	7 314	7 417	7 466	7 666	7 863	8 005	8201
Počet nově zjištěných onemocnění	52 649	52 375	51 644	56 683	54 303	56 545	56 311	56 398	55 975	61 357	64 997	68 494	72 063	72 600
Počet nově zjištěných onemocnění na 100 000 obyv.	513	512	506	556	532	553	548	546	537	585	618	653	686	691
Počet úmrtí - celkem ²	22 852	23 460	23 421	24 603	23 725	23 326	23 521	22 869	22 259	21 747	22 286	23 290	23 886	25 508
Počet úmrtí – ve vztahu k DM ³	13 037	11 983	11 470	11 436	11 269	11 154	10 759	10 990	11 061	10 821	11 502	12 369	11 915	-
Diabetická noha - celkem	37 764	36 725	38 166	37 971	39 753	38 090	41 328	42 337	42 992	43 990	45 118	44 011	43 248	44 657
s amputací	5 865	6 1 1 8	6 743	7 029	7 444	7 303	7 834	7 853	8 169	8 439	8 501	10 408	10 425	11 168
nad kotníkem	-	-	-	-	-	-		-	-	-	-	6 469	6 390	6 899
pod kotníkem	-	-	-	-	-	-		-	-	-	-	3 939	4 035	4 269
Náklady na pacienty s DM samputací I ⁴ (mil. Kč)	976	1 019	1 123	1 170	1 239	1 216	1 304	1 307	1 360	1 405	1 415	1 733	1 736	1 859
Náklady na pacienty s DM s amputací II ⁵ (mil. Kč)	1 475	1 539	1 696	1 768	1 872	1 837	1 970	1 975	2 054	2 122	2 138	2 617	2 622	2 809

Tabulka 1 Počty pacientů s diabetem a výskyt vybraných komplikací v letech 2000-2013

¹ zdrojem dat je "Výkaz o činnosti zdravotnických zařízení pro obor diabetologie (A04)", diabetes je definován jako E10, E11, E13, R73.0

² Úmrtí z jakékoliv příčiny u pacientů s DM (dle A04)

³ DM uveden mezi příčinami úmrtí pacientů (dle Listu o prohlídce zemřelého); rok 2013 nezobrazen z důvodu nekonzistence sběru dat (v období 2000-2012 může být v datech LPZ uvedeno celkem 6 dg. (3 hlavní, 3 vedlejší), v datech za rok 2013 může být uvedeno až 40 diagnóz).

⁴ Na základě průměrných nákladů z let 2011-2013 za pacienty s DM s amputací (bez protézy) a počtu pacientů s amputací v daném roce

⁴ Na základě průměrných nákladů z let 2011-2013 za pacienty s DM s amputací (včetně protézy) a počtu pacientů s amputací v daném roce

Závěr

Metaanalýzy klinických hodnocení **(67)** publikovaných mezi roky **2002-2017** zahrnující cca **2330 jedinečných jedinců**, představují analýzu publikací **druhé nejčastější indikace** transplantací kmenových buněk po hematoonkologických onemocněních.

Zahrnuté studie jsou převážně randomizované, kontrolované studie (kde komparátorem je placebo nebo standardní léčba).

Sledované **"Hard endpoints"** tak i **"Surrogate endpoints"** přesvědčivě dokumentují bezpečnost a účinnost léčby aplikací autologní kostní dřeně pro léčbu kritické končetinové ischemie bez možnosti revaskularizace.

Děkuji za pozornost !