HEARTLUNG CENTER LEIDEN

L U Leiden University

Mutation in PDGFR β :

a potential new pathogenic variant for mitral valve prolapse
Yoska (H.W.) Wu, PhD candidate

Introduction

- Mitral valve prolapse (MVP) is a common valvular heart disease which can cause regurgitation and eventually can lead to heart failure symptoms and arrhythmias.
- MVP due to myxomatous degeneration is characterized by familial clustering.
- In a genetic screening program for MVP patients, we identistind a platedmatenlerived gratasth factor receptor β (PDGFRß)-E162K missense variant.

PDGFR β

PDGFR β expression in human mitral valves

AIM

To investigate whether the PDGFRß-E162K mutation is responsible for mitral valve abnormalities

Methods

Histological analyses showing alterations reminiscent of myxomatous mitral valve

 valve of homozygous hearts

heartlung CENTER LEIDEN

Current experiments

Kruithof et al., Journal of Visualized Experiments, 2015

Conclusions

Echocardiographic evaluation revealed a significant larger mitral valve diameter in mice harboring the PDGFRß-E161K mutation

Histological and morphometric analyses show abnormalities in mitral valve morphology of mutant hearts reminiscent of the myxomatous degeneration in mitral valve prolapse.
 pap

No phenotype of myxomatous degeneration in mutant neonatal hearts

- The PDGFRß-E162K variant is associated with familial MVP and alters the function of PDGFRß.
- Mice harboring this mutation display mitral valve defects with a larger mitral valve annulus and larger and thicker PMVL.
- These defects were not expressed in mutant neonatal hearts, indicating that it is acquired during life.

