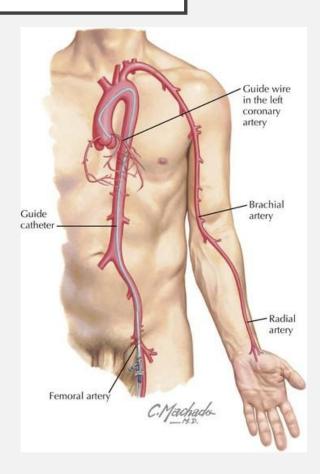
DISTAL RADIAL ACCESS AND POSTPROCEDURAL US EVALUATON OF PROXIMAL AND DISTAL RADIAL ARTERY

Department of Cardiology, University Hospital and Faculty of Medicine Pilsen, Charles University

D. Horák, I. Bernat, Š. Jirouš, D. Slezák, R. Rokyta

ARTERIAL ACCESS FOR PCI


Recommendations on choice of stent and access site

Recommendations	Class ^a	Level ^b
DES are recommended over BMS for any PCI irrespective of: • clinical presentation • lesion type • planned non-cardiac surgery • anticipated duration of DAPT • concomitant anticoagulant therapy. 100,578,579,640	1	Α
Radial access is recommended as the standard approach, unless there are overriding procedural considerations. 172,638,641	-1	A
BRS are currently not recommended for clinical use outside of clinical studies. 642–650	Ш	С

BMS = bare-metal stents; BRS = bioresorbable scaffolds; DAPT = dual antiplatelet therapy; DES = drug-eluting stents; PCI = percutaneous coronary intervention.

aClass of recommendation.

^bLevel of evidence.

ARTERIAL ACCESS FOR PCI

European Heart Journal (2019) **40**, 87–165 European Society doi:10.1093/eurheartj/ehy394 **ESC/EACTS GUIDELINES**

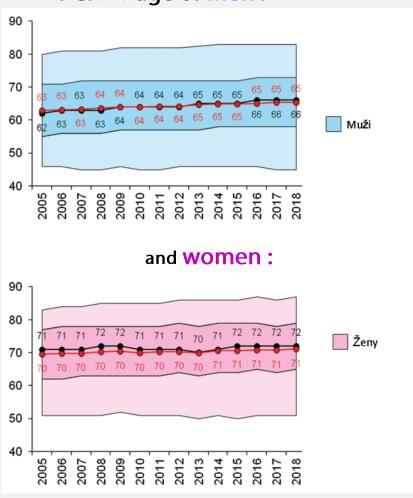
2018 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on myocardial revascularization of the European Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS)

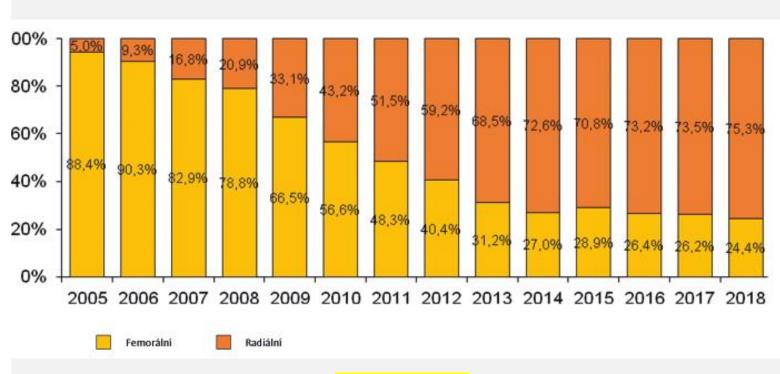
Developed with the special contribution of the European Association for Percutaneous Cardiovascular Interventions (EAPCI)

Recommendations on choice of stent and access site

Recommendations	Class ^a	Level ^b
DES are recommended over BMS for any PCI irrespective of: clinical presentation lesion type planned non-cardiac surgery anticipated duration of DAPT concomitant anticoagulant therapy. 100,578,579,640	-	Α
Radial access is recommended as the standard approach, unless there are overriding procedural considerations. 172,638,641	1	A
BRS are currently not recommended for clinical use outside of clinical studies. 642–650	Ш	С


BMS = bare-metal stents; BRS = bioresorbable scaffolds; DAPT = dual antiplatelet therapy; DES = drug-eluting stents; PCI = percutaneous coronary intervention.

aClass of recommendation.

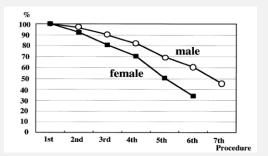

^bLevel of evidence.

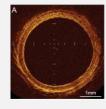
PCI in the Czech Republic - data from the National Register of Cardiovascular Interventions

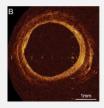
Transradial

versus transfemoral approach for PCI

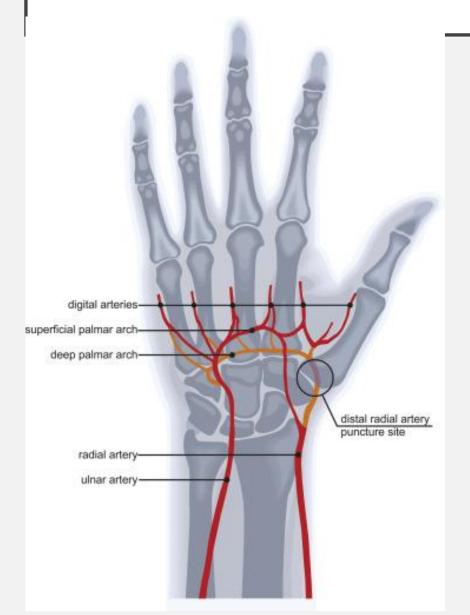
SYSTEMATIC-REVIEW - 66 TRIALS, EARLY RAO (UP TO 24HRS) IN 24 OF THEM

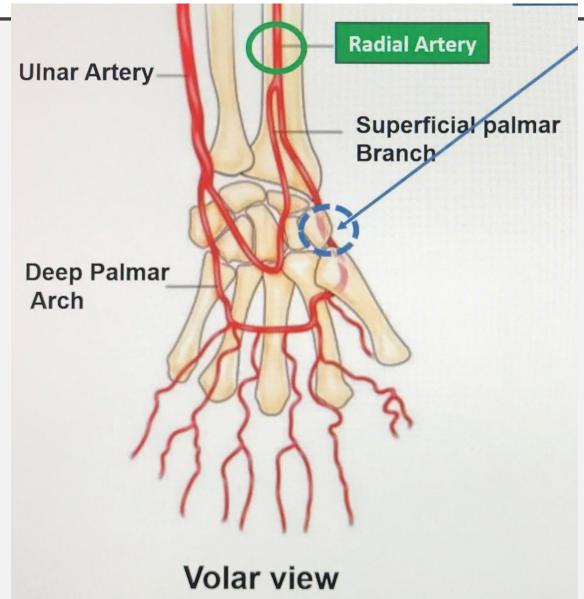



Early RAO ≤24h 7,7%


24 studií s téměř 11 000 pacienty

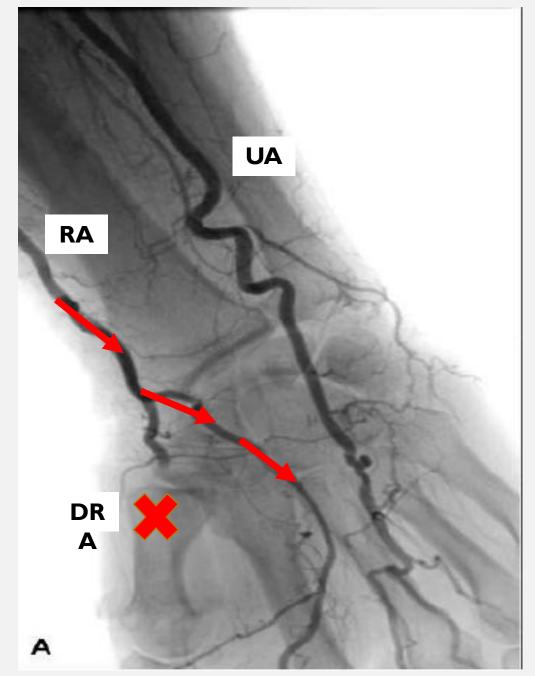
pouze RCT (n=12) s > 5000 pacienty 7,7%

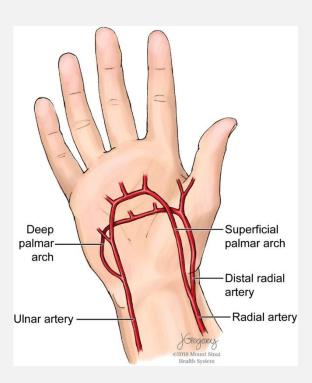


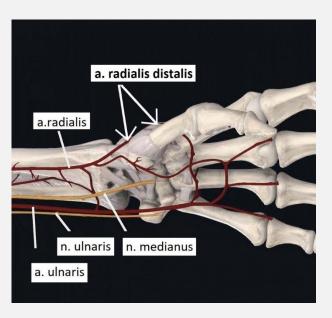

Rashid et al. Radial Artery Occlusion After Transradial Interventions: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2016

PROXIMAL RADIAL ACCESS COMPLICATIONS

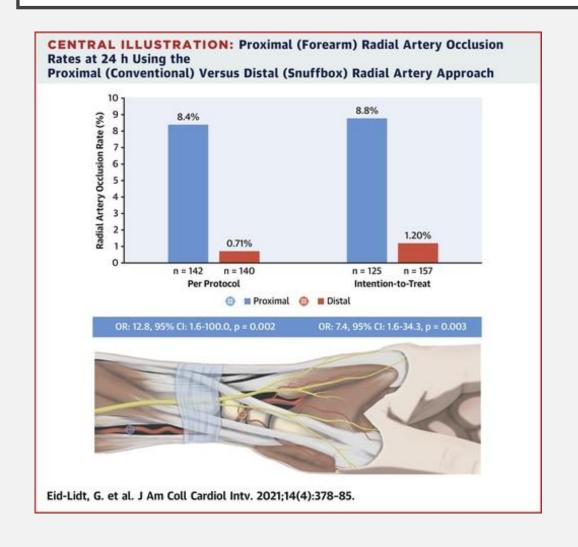
Complication	Rate of occurrence
RAO	3,9-8,1%
Spasm	4,3-16%
Hematoma	1,2-2,6%
Pseudoaneurysm	0,03-0,2%
Perforation of Radial/Brachial a.	0,07-0,9%
AV fistula	<0,1%
Dissection of Access Artery	0,05-0,4%
Hand Ischemia	<0,1%
Compartment syndrome	<0,05%


WHY DISTAL RADIAL ACCESS?

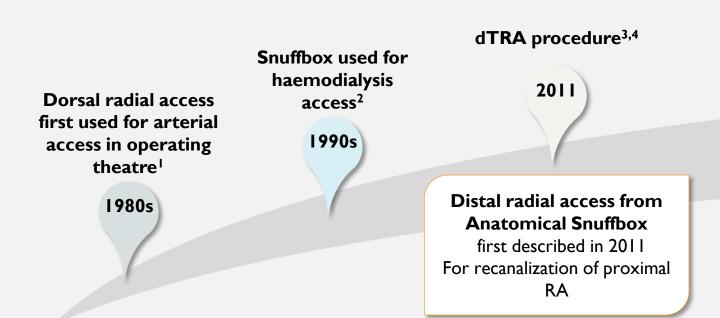



WHY DISTAL RADIAL APPROACH?

- Minimises the risk of proximal closure
- Minimises the risk of damage to the radial artery before branching
- Arterial compression is easier, shorter and gentler
- Allows a combination of two distal with one proximal approach, giving the option of four additional arterial access routes
- Radial artery can be used for AV fistula or as a quality arterial graft for CABG after the procedure
- Minimizes risk of compartment syndrome and damage to wrist structures
- Minimizes the risk of damage to surrounding wrist tissues
- Allows for recanalization of the proximal RAO closure
- Allows better anatomical proportions for left-sided radial access
- Minimises workload of staff/nurses by using simplified haemostatic protocol


Sgueglia GA et al. JACC CI 2018

DISTAL RADIAL APPROACH AND REDUCTION OF PROXIMAL RAO - RECENT RCT


JACC CARDIOVASCULAR INTERVENTIONS 2021;14:4.

DISTAL RADIAL ACCESS (DTRA)

dTRA is also used for non-coronary procedures and for dialysis ^{6,7}

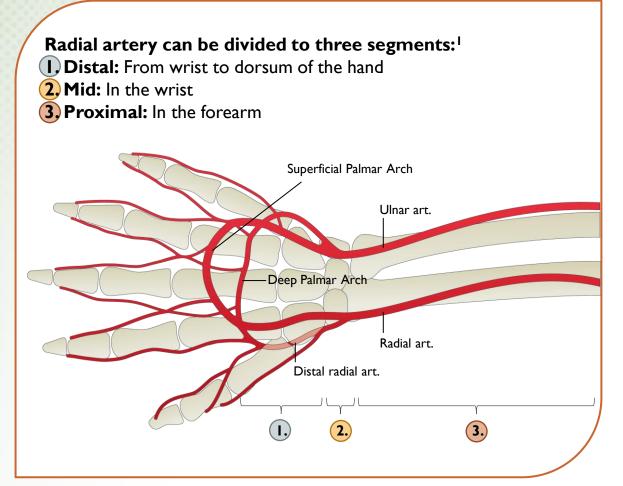
dTRA method described for coronary intervention⁴

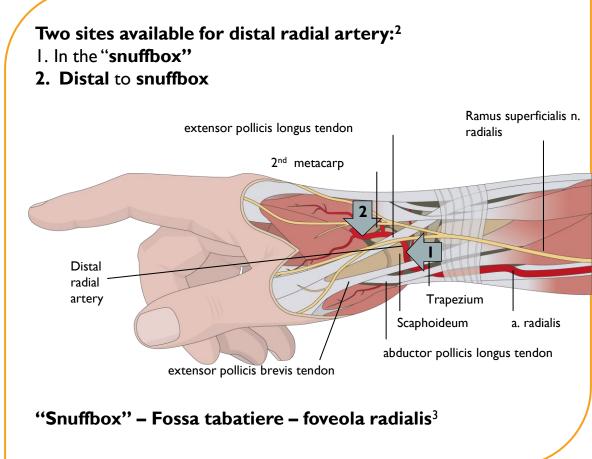
2017

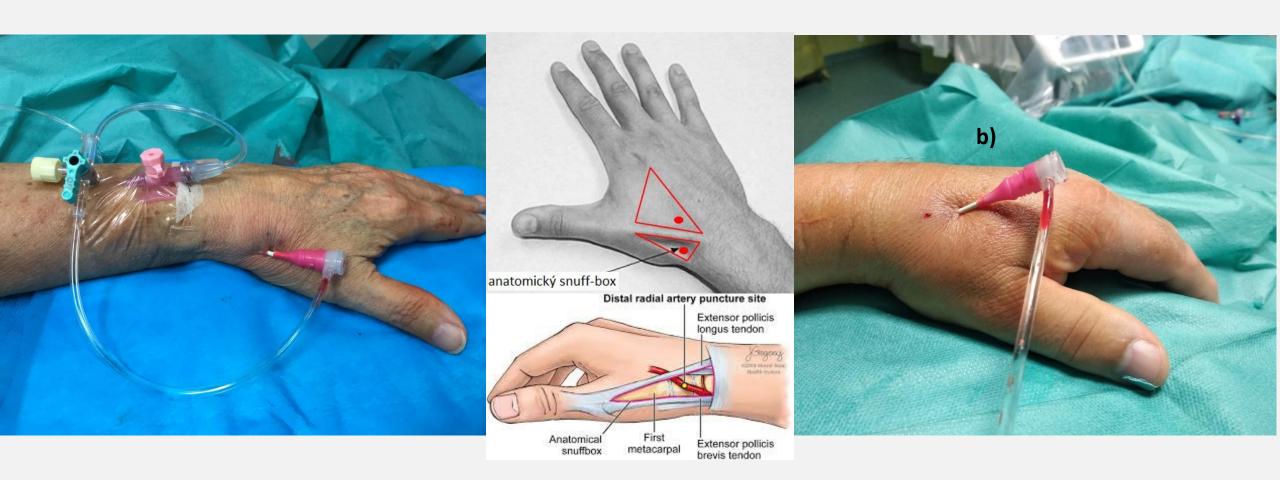
dTRA access: published firstly by Ferdinand Kiemeneij
Originally for left-sided radial access; now used for both right and left⁵

I. Pyles S et al. Anesth Analg 1982;61:876–8; 2. Horimi H et al. ASAIO J 1996;42:177–80; 3. Babunashvili A, Dundua D. Catheter Cardiovasc Interv 2011;77:530–6; 4. Kiemeneij F. EuroIntervention 2017;13:851–7; 5. Peixoto Oliveira et al. Cardiovasc Diagn Ther 2019;9:513–9; 6. Brunet MC et al. Neurointerv Surg 2019;11:710–3; 7. Letachowicz K et al. J Vasc Surg 2016;63:436–40.

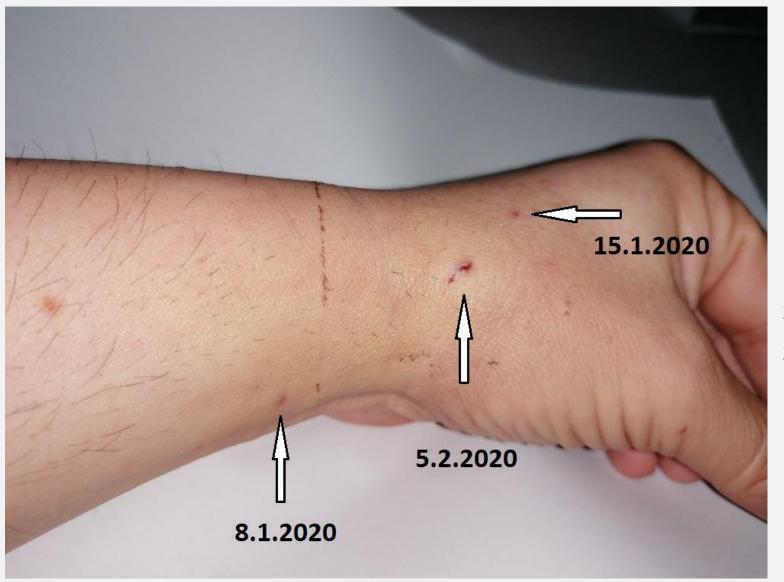
Ferdinand Kiemeneij


1993 – first publication about transradial PCI – IA in guidelines since 2015


2017 - first complex publication about distal radial approach


- DRA and Cardiology department in Pilsen Faculty hospital
 - Bernat I. Distální radiální přístup u koronárních katetrizací a intervencí. Interv Akut Kardiol 2020; 19(2): 88–90
 - Bernat I. Distal Radial Approach: The Next Promising Step in an Even More Minimally Invasive Strategy. JACC Cardiovasc Interv. 2021 Feb 22;14(4):386-387
 - Aminian A. et al. Distal Versus Conventional Radial Access for Coronary Angiography and Intervention: The DISCO RADIAL Trial. JACC Cardiovasc Interv. 2022 Jun 27;15(12):1191-1201

WHERE IS LOCATED PUNCTURE SITE FOR DTRA?



"Snuffbox" Dorsal/Distal radial access

DRA approach example in Faculty Hospital Pilsen

49 year old male with MVD:

- 1. Proximal (conventional) TRA
- 2. Dorsal access
- 3. "Snuffbox"
- 1. 8.JAN.2020 primary PCI (RCA)
- 2. 15.JAN.2020 staged PCI (RIA, Cx)
- 3. 5.FEB.2020 iFR and second staged PCI

On-line congress - February 2021

Japanese Association of Cardiovascular Interventiand Therapeutics

DISTAL RADIAL ACCESS AND POSTPROCEDURAL ULTRASOUND EVALUATION OF PROXIMAL AND DISTAL RADIAL ARTERY

- • ⊕•♦□๑•□♦■೨
 • ♠∞ຓ
 ○□•♦
 □М●Ж๑Д•М
 ○М♦‱□೨
 • ๑•

 • М₂
 • №
 □
 • №
 • №
 • №
 • ∞
 • ∞
 • №
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞
 • ∞</td
- \$\overline{\text{\$\pi\$}\$\$ \\ \mathred{\mathr

PATIENT CHARACTERISTICS

Characteristics	N=115
Female	23
Age (years)	67 (±10) (range 40–86)
BMI (kg/m^2)	30 ± 5
Hypertension	87 (76)
Hypercholesterolemia	80 (70)
DM	47 (40)
Smoker	34 (30)
Prior MI	20 (17)
Prior catheterization/PCI	28 (24)
ASA	81 (70)
P2Y12	48 (42)
OAT	20 (17)

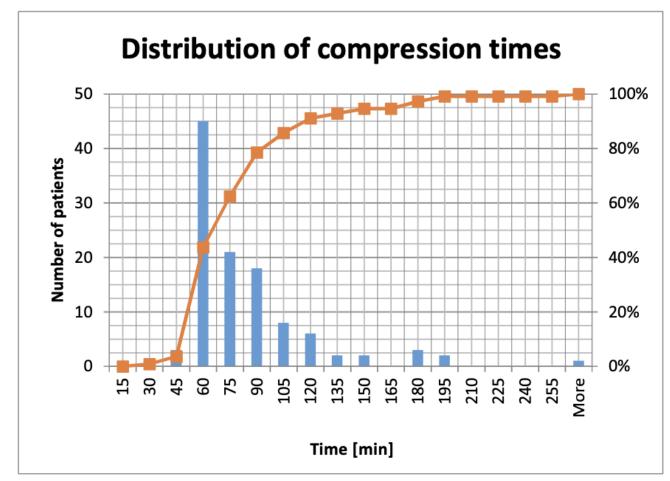
Data expressed as absolute (relative %) frequencies; age and BMI are expressed as mean values ± standard deviation

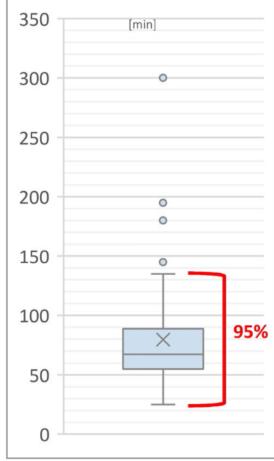
BMI body mass index, *DM* diabetes mellitus, *MI* myocardial infarction, *PCI* percutaneous coronary intervention, *AT* antithrombotic therapy, *OAT* oral anticoagulation treatment—NOAC or warfarin

PROCEDURAL CHARAKTERISTICS

Procedural characteristics	N=115 (%)
SB/DDRA	83 (72)
DDRA	32 (28)
Left/right DRA	111 (97)/4 (3)
Indication for catheterization	
Stable CAD/diagnostic	99 (86)
Elective PCI	10 (9)
ACS	6 (5)
GSS 5F/6F	109/6 (95/5)
Contrast media (ml)	128 ± 55.9
Fluoro time (min)	6.8 ± 5.8
Same day discharge	65 (56)
CAG	76 (66)
(CAG+) PCI	39 (34)
Compression time (min)	80 ± 39

Data expressed as absolute (relative %) frequencies, continuous variables as mean value \pm standard deviation

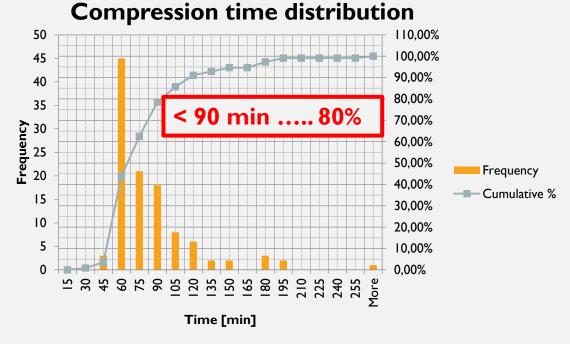


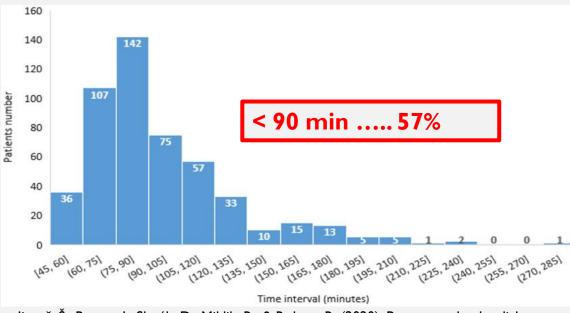

RESULTS OF US MEASUREMENTS AND COMPLICATION RATE

	Diameter $(n=115)$	F(n=23)	M = (92)	Local hemato- mas > 2 cm	RAO
DRA	2.28 ± 0.49	$2.25 \pm 0.11^{\text{II}}$	$2.32 \pm 0.05^{\P}$	0	0
PRA	2.86 ± 0.49	$2.56 \pm 0.41^{\#}$	$2.93 \pm 0.49^{\#}$	NA	0

p < 0.001, NS

Diameters in mm expressed as mean \pm standard deviation, RAO, and complications as frequencies *PRA* proximal radial artery, *SB* anatomical snuffbox, *DDRA* distal distal (dorsal) radial artery, *RAO* radial artery occlusion




COMPRESSION TIME DTRAVS CTRA

80 min

• ,• •• •• ••

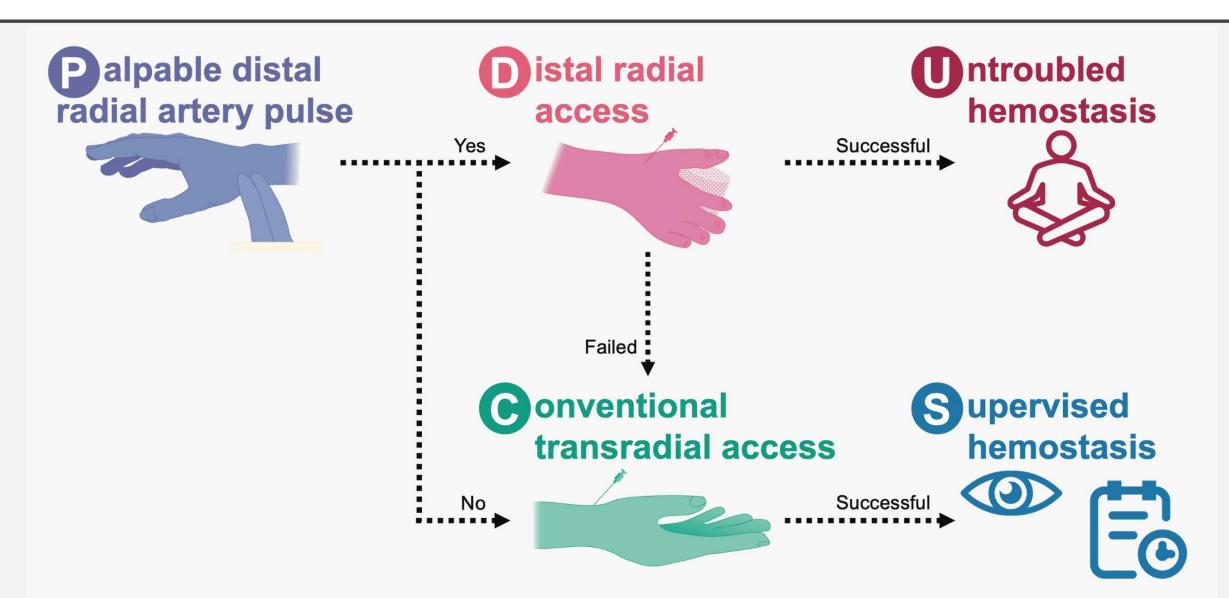
98 min

Jirouš, Š., Bernat, I., Slezák, D., Miklik, R., & Rokyta, R. (2020). Post-procedural radial artery occlusion and patency detection using duplex ultrasound vs. the reverse Barbeau test. European Heart Journal Supplements: Journal of the European Society of Cardiology, 22, F23 - F29.

TR Band compression device modification

In DRA there is no need to perform complex perfusion haemostasis protocol!

SIMPLIFIED HEMOSTASIS PROTOCOL FOR DRA


Cathlab	Radial lounge or ward
 TR Band is inflated to 12 ml when patient is still on the table and sheath is removed Pressure is reduced to minimum without bleeding. Note residual air volume in the TR Band Repeat step 2. again before leaving cathlab 	 Decrease again to minimal pressure every 20 min (usually 2–3 ml) and note residual pressure When pressure is off wait 30 min for safety and remove the device In case of bleeding increase the pressure to stop it and note the residual volume and carry on with the protocol

WORK SUMMARY

- *™□M •M□M ■□
- 6™M©■ M□○□□M··X□■ 9\$® --X©○M◆M□ +⊙•

- P\$ DHSOM ◆M□ •5•
- \$\$\$ £\SOM♦M□ •S•
- •O50•M□ ◆350 P\$ H■ SON DOM ®

FUTURE OF DTRA

